Kernel score statistic for dependent data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kernel score statistic for dependent data

The kernel score statistic is a global covariance component test over a set of genetic markers. It provides a flexible modeling framework and does not collapse marker information. We generalize the kernel score statistic to allow for familial dependencies and to adjust for random confounder effects. With this extension, we adjust our analysis of real and simulated baseline systolic blood pressu...

متن کامل

M-Statistic for Kernel Change-Point Detection

Detecting the emergence of an abrupt change-point is a classic problem in statistics and machine learning. Kernel-based nonparametric statistics have been proposed for this task which make fewer assumptions on the distributions than traditional parametric approach. However, none of the existing kernel statistics has provided a computationally efficient way to characterize the extremal behavior ...

متن کامل

Pearson’s Goodness of Fit Statistic as a Score Test Statistic∗

For any generalized linear model, the Pearson goodness of fit statistic is the score test statistic for testing the current model against the saturated model. The relationship between the Pearson statistic and the residual deviance is therefore the relationship between the score test and the likelihood ratio test statistics, and this clarifies the role of the Pearson statistic in generalized li...

متن کامل

Nonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data

The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...

متن کامل

Density Estimators for Truncated Dependent Data

In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: BMC Proceedings

سال: 2014

ISSN: 1753-6561

DOI: 10.1186/1753-6561-8-s1-s41